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The transient deformation of liquid capsules enclosed by incompressible membranes 
whose mechanical properties are dominated by isotropic tension is studied as a model 
of red blood cell deformation in simple shear flow. The problem is formulated in terms 
of an integral equation for the distribution of the tension over the cell membrane which 
is solved using a point-wise collocation and a spectral-projection method. The 
computations illustrate the dependence of the deformed steady cell shape, membrane 
tank-treading frequency, membrane tension, and rheological properties of a dilute 
suspension, on the undeformed cell shape. The general features of the evolution of two- 
dimensional cells are found to be similar to those of three-dimensional cells, and the 
corresponding membrane tank-treading frequency and maximum tension are seen to 
attain comparable values. The numerical results are compared with previous 
asymptotic analyses for small deformations and available experimental observations, 
with satisfactory agreement. An estimate of the maximum shear stress for membrane 
breakup and red blood cell hemolysis is deduced on the basis of the computed 
maximum membrane tension at steady state. 

1. Introduction 
The deformation of erythrocytes, also called red blood cells, is an important field of 

study in biorheology and a significant area of clinical and laboratory blood research. 
Interest in the topic within the discipline of fluid dynamics has arisen simultaneously 
with the realization that red blood cells are nucleus-free capsules that are enclosed by 
a biological membrane with a composite structure and unusual mechanical properties 
(Dintenfass 1962). This feature distinguishes the behaviour of red blood cells from that 
of inflexible rigid particles or deformable liquid droplets with regular interfaces 
characterized by isotropic surface tension. The internal fluid of the red blood cells is 
an aqueous solution of hemoglobin which, under normal conditions, may be 
considered to be a Newtonian fluid. In the absence of an external flow, healthy red 
blood cells assume the shape of biconcave disks with a range of aspect ratios. 

A satisfactory understanding of the structure of the cell membrane is now believed 
to be available. The membrane is known to consist of a double layer of similar but not 
identical lipids that face away from each other and rest against the cell skeleton. The 
latter is a network of the extrinsic protein spectrin, held together by linking actin 
filaments and protein 4.1. Other intrinsic proteinic molecules transverse the 
arrangement of the lipid molecules and serve to anchor the skeleton onto the bi-layer 
(Evans & Skalak 1980; Fischer 1992). It has been shown that the membrane has a fluid- 
like character as manifested by the diffusion of surface tracers, and a solid-like 
character as manifested by the fact that the cell returns to its unstressed shape after 
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deformation. It is not clear, however, whether material particles on the membrane 
assume their original relative position after the cell has returned to the unstressed state. 

Certain aspects of the mechanical properties of the cell membrane have been 
established with confidence, but a satisfactory mechanical model applicable to 
arbitrary deformations is not available (Tozeren et al. 1984). One well-established 
property is that the surface area of the membrane is locally and globally conserved, 
which means that a differential material element of the membrane maintains its original 
surface area. Another well-established property is that the membrane exhibits some 
type of viscoelastic behaviour (Skalak, Ozkaya & Skalak 1989). The membrane 
incompressibility and viscous behaviour are attributed to the lipid bi-layer, whereas the 
elastic behaviour is attributed to the spectrin skeleton. The values of the effective 
rheological constants of the membrane depend upon the cell’s health and age, but also 
upon the history, severity, and type of deformation (Sutera, Mueller & Zahalak 1990). 
Structural rearrangements in the network of the intrinsic proteins at large deformations 
may be responsible for plastic behaviour. 

The effect of the membrane mechanical properties on the cell’s mobility and 
deformation in an applied flow is a central issue in the study of blood flow. A stiff 
membrane or a membrane with a reduced surface area yields a cell that is difficult to 
deform and more likely to occlude the entries of capillaries, thereby causing several 
types of blood pathology including sickle cell anemia, cerebral malaria, and possibly 
diabetes (Sutera & Krogstad 1991). To develop a treatment, it is important to establish 
the relationship between the membrane’s chemical composition and mechanical 
properties so that the cell motion may be monitored and thus controlled. 

A great deal of our current understanding of the behaviour of red blood cells in flow 
is due to experimental observations of the cells’ deformation in unidirectional simple 
shear flow. Schmid-Schonbein & Wells (1969) and Goldsmith (1971) were the first to 
demonstrate that red blood cells in simple shear flow exhibit two types of motion: 
rotation like rigid particles at low shear rates, and a fluid drop-like motion and 
deformation at higher shear rates. In the latter type of motion the dimples of the 
biconcave disk disappear and the cell assumes the shape of a prolate ellipsoid, while the 
membrane rotates like a tank tread around the cytoplasmic fluid. Subsequent research 
has shown that the ratio of viscosities between the suspending and cytoplasmic fluid 
may play an important role in demarcating the prevailing type of behaviour, rotation 
versus deformation along a stationary axis (Goldsmith & Marlow 1972; Keller & 
Skalak 1982). 

In carrying out theoretical and computational studies of red blood cell deformation 
due to flow, a mechanical model of the cell membrane must be adopted; and since a 
complete understanding of the membrane’s mechanical response is not available, some 
approximations must be introduced. A viscoelastic model that incorporates an effective 
surface viscosity and moduli of elasticity is considered to be adequate for small 
deformations, although care must be taken so that the condition of membrane 
incompressibility is not violated at a significant level (Evans & Hochmuth 1976; Evans 
& Skalak 1980). 

In the present work we perform a computational study of red blood cell deformation 
in simple shear flow, maintaining the condition of membrane incompressibility and 
neglecting the viscoelastic behaviour. Specifically, we assume that the cell membrane is 
a thin shell that supports isotropic tension and, thus, it behaves like a two-dimensional 
inviscid fluid with the tension playing the role of surface pressure. In the mathematical 
formulation, the tension is an unknown which is to be computed as part of the solution 
so as to satisfy the condition of incompressibility, that is, so as to ensure that the 
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surface area of an arbitrary element of the membrane is conserved during the motion. 
The model of incompressible surface flow may be readily combined with a viscoelastic 
model to yield a more realistic description of the cell’s behaviour, but this results in a 
numerical problem that is intractable with the currently available computational 
resources (Pozrikidis 1994, 1995). 

One important consequence of neglecting the elastic behaviour is that if the flow is 
stopped, the cell will not return to the unstressed shape of the biconcave disk but will 
retain its instantaneous configuration. Another consequence is that the stationary 
deformed cell shape depends only upon the membrane surface area and is independent 
of the shear rate and of the initial cell configuration, as long as the latter is not 
substantially involved. Thus, differences in the asymptotic shapes corresponding to 
different initial cell shapes and orientations are due to numerical error. Fischer (1980) 
reported that the energy dissipation within the membrane is higher than or comparable 
to that in the cytoplasm for a wide range of shear rates, and the steady cell shapes show 
some dependence on the shear rate. These observations underline the limitations of the 
present model. 

The present study is based on numerical solutions of a series of initial value problems 
in which a two-dimensional or three-dimensional cell deforms from a specified initial 
shape until it reaches a steady state. The numerical procedure is based on a variation 
of the boundary integral method which formulates the problem in terms of an integral 
equation of a non-standard type over the cell surface. One distinguishing feature of the 
present study is that the computations follow the cell motion at large deformations. 
The results of the three-dimensional computations depart from those of previous 
studies for two-dimensional or axisymmetric flows, and represent a first attempt to 
describe cell behaviour in a genuinely three-dimensional flow. 

One objective of the present computations is to estimate the membrane tension and 
tank-treading frequency as functions of the initial cell shape. These results are useful 
in establishing thresholds for the maximum shear stress or shear rate above which the 
membrane is expected to fail. The thresholds are derived on the assumption that the 
membrane fails at a specified level of tension that must be found by laboratory 
observation, neglecting the effect of membrane fatigue due to cyclic loading associated 
with ageing. The results for the cell shape are used to compute the effective viscosity 
and normal-stress differences of a dilute suspension using a well-established formalism 
that was originally developed for suspensions of liquid droplets. The contribution of 
the membrane viscous dissipation to the effective stress tensor is taken into 
consideration. 

To make the computations tractable, we shall assume that the viscosity of the 
cytoplasmic fluid is equal to that of the suspending fluid. Under normal conditions in 
vivo, the viscosity ratio between these two fluids is close to five, but experiments in vitro 
are usually conducted using a dextran-saline solution as the suspending medium and 
therefore in a range of viscosity ratios including the value of unity. Keller & Skalak 
(1982) showed that the viscosity ratio plays an important role in determining the 
character of the asymptotic motion, and predict that, when the viscosity ratio is equal 
to one, the cell deforms to a steady asymptotic shape. When steady tank-tread motion 
is established, the tank-treading frequency of red blood cells is known to be insensitive 
to the viscosity of the suspending medium (Fischer, Stohr-Liesen & Schmid-Schonbein 
1978). 

There are a number of previous analytical and computational studies of the 
behaviour of red blood cells in simple shear flow and we review certain salient 
contributions. One class of studies has considered the behaviour of two-dimensional 



178 H .  Zhou and C. Pozrikidis 

cells bounded by incompressible membranes. Kholeif & Weymann (1974) computed 
the motion of cells whose cross-sectional shape is given by the Cassini ovals, and 
observed that the cell may either rotate as a rigid particle or exhibit steady deformation 
similar to that of liquid droplets (Stone 1994). The prevailing behaviour was found to 
depend upon the magnitude of the membrane tank-treading velocity which was a free 
parameter of their problem. Sugihara & Niimi (1984) and Niimi & Sugihara (1985) 
considered the corresponding behaviour of cells with elliptical shapes and computed 
the membrane tension and time of exposure to high tension. One objective of their 
studies was to identify conditions for material fatigue leading to membrane breakup. 
Zahalak, Rao & Sutera (1987) relaxed the assumption of fixed particle shape and 
solved for the steady shapes of two-dimensional cells assuming small and moderate 
deformations from the circular shape. Their work will be discussed in more detail in 
$ 3  of this paper. The present computations for two-dimensional cells extend these 
solutions by accounting for transient motions and large deformations. 

Another group of studies have considered three-dimensional flows, adopting various 
models for the cell membrane motion and mechanical properties. Keller & Skalak 
(1982) computed simple shear flow past an ellipsoidal cell of fixed shape. In their 
model, the tangential velocity of the membrane is prescribed so that the surface area 
of the membrane is conserved on a global but not on a local level. Sutera and 
coworkers used this model to illustrate streamline patterns and provide estimates for 
the membrane effective viscosity and elasticity (Sutera, Pierre & Zahalak 1989). The 
present model offers an improvement, in the sense that it allows both the cell shape 
and membrane tank-treading velocity to be computed as part of the solution. 
Richardson (1974, 1975) computed the deformation of oblate spheroidal capsules with 
linearly elastic interfaces during the initial stage of the motion. Brennen (1975) 
computed the effective viscosity of a suspension of spherical capsules for several types 
of interfacial behaviour. Barthes-Biesel and coworkers (Barthts-Biesel 1980; Barthks- 
Biesel & Rallison 1981 ; Barthes-Biesel & Sgaier 1985) studied the steady and transient 
deformation of mildly deformed capsules with elastic and viscoelastic interfaces. 
Pozrikidis (1994, 1995) computed the transient deformation of capsules bounded by 
viscous interfaces with constant surface tension or by elastic membranes. The present 
model for cells with incompressible interfaces is believed to reproduce the dynamics of 
red blood cell motion in a more accurate manner. For completeness, we also cite the 
numerical studies of Li, Barthes-Biesel & Helmy (1988) and Pozrikidis (1990) on the 
transient deformation of cells with elastic and incompressible membranes in uniaxial 
stagnation-point flow. Both of these studies were conducted using boundary integral 
methods. 

In the present study we shall consider both two-dimensional and three-dimensional 
shapes. Studying the simplistic two-dimensional problem was found to be necessary in 
order to explore with adequate accuracy the behaviour at large deformations. Owing 
to constraints associated with high computational cost and numerical instabilities, 
studies of large three-dimensional deformations could not be carried out with 
satisfactory accuracy and are not reported. We find, however, that the two-dimensional 
and three-dimensional evolutions share a number of common features, and the former 
offers qualitative and in some cases quantitative information about the latter. 

2. Problem statement and numerical method 
We consider the deformation of a two-dimensional or three-dimensional capsule 

subject to a incident shear flow along the x-axis, urn = (ky,  0, 0), where kis the shear rate. 
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FIGURE 1. Schematic illustration of (a) a two-dimensional cell, (b) a three-dimensional cell placed 
in simple shear flow. 

Schematic illustrations of instantaneous cell configurations are presented in figure 
1 (a, b). In the two-dimensional case we parametrize the membrane using a single 
variable 01 that takes values within the range 0 < 01 < 27t. For an elliptical cell, a is the 
natural polar coordinate of the elliptical coordinate system. In the three-dimensional 
case we introduce two curvilinear non-orthogonal surface coordinates f and 7 that take 
values within the ranges 0 < 6 < 271: and -71/2 < 7 < n/2. Discrete values of 01 and 
intersections of f -  and 7-lines yield interfacial grid points. It is consistent to regard the 
grid points either as Lagrangian point particles moving with the velocity of the fluid, 
or as plain interfacial markers moving with the velocity of the fluid normal to the 
interface. 

Assuming that the flow occurs under conditions of creeping motion at vanishing 
Reynolds number, the velocity is continuous across the membrane of the cell, there is 
no slip between the lipid layers and the skeleton, and the viscosity of the cell is equal 
to that of the ambient fluid, we derive an integral representation for the velocity in 
terms of an interfacial distribution of point forces. In the case of three-dimensional 
flow we obtain 

where G is the three-dimensional free-space Green's function or Stokeslet given by 

Details on the derivation of (1) may be found in standard texts on boundary integral 
methods (Pozrikidis 1992, chap. 5). For two-dimensional flow the differential surface 
element d S  in (1) is replaced with the differential arclength dl and the coefficient 87t 
becomes 471:. The two-dimensional Stokeslet is given by 

I n  

xi xi 
G,(x, xo) = - 8, In If1 + __. 

f2 (3) 

The density Afof the Green's function distribution in (1) is equal to the discontinuity 
in the traction or surface force across the membrane. Assuming that the membrane is 
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a two-dimensional inviscid medium characterized by isotropic tension T that acts in the 
plane of the interface, we write a force balance on a section of the membrane 6M 
enclosed by the contour 6C and obtain 

18, Af dS = J8, Tn x t dl, (4) 

where n is the normal vector pointing into the ambient fluid, and t is the tangent vector 
oriented in the counterclockwise sense with respect to n (Pozrikidis 1992, $5.5). Using 
the Stokes theorem and passing to the limit as the area of 6M tends to zero, we obtain 
the differential force balance 

Af = T ~ K ,  n - (/- nn) . VT, (5) 

where K, is the mean curvature of the interface, / is the identity matrix, and the 
projection operator /-nn extracts the tangential component of a vector that it 
multiplies. The corresponding expression for two-dimensional flow is 

Requiring that the membrane tension 7 develops so that a differential element of the 
membrane deforms while maintaining its original surface area, we find that the 
instantaneous interfacial velocity field satisfies the kinematic condition 

for three-dimensional flow, or 
au 
ai 

t.- = 0 

for two-dimensional flow (Pozrikidis 1992, pp. 155, 168). Substituting (5) into (1) and 
then into (7) yields an integral equation of a non-standard type for the distribution of 
the tension over the cell surface, written in the symbolic form F(x;T)  = 0 where x 
represents a point on the membrane and the argument T of F stands for the whole 
distribution of the tension over the interface. The problem is reduced to solving the 
integral equation, substituting the result back into ( l ) ,  computing the velocity at the 
grid points, and then advancing the position of the grid points using either the total 
velocity of the fluid or the component of the velocity normal to the interface. 

2.1. Boundary element formulation 
To solve the integral equation F(x;T) = 0 we use a boundary element method that is 
similar to that developed previously by Pozrikidis (1993, 1994, 1995) to study the 
deformation of liquid drops with constant surface tension and viscous or elastic 
interfacial behaviour, but incorporates certain important new features. 

In the case of three-dimensional flow, we discretize the surface of the cell into a set 
of N boundary elements En, n = 1, ... N ,  and then replace (1) with its discrete 
counterpart 

r N  
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are the mean value of the Green's function and discontinuity in the surface force over 
the nth element, and S,  is the surface area of the nth element. The approximation in 
(9) is a variant of the trapezoidal rule. The corresponding discretization of the integral 
equation for two-dimensional flow follows by a straightforward change in notation. 

The mean value of the jump in the traction in (10) may be computed by substituting 
( 5 )  into the integrand and then applying numerical integration, but this requires the 
sensitive computation of the mean curvature and surface derivatives of the tension. To 
bypass these computations, we return to (4) and write 

(Af), = 7n x tdl(x) 
S n  C ,  

for three-dimensional flow, where C, is the contour of the nth element and t is the 
tangential vector as shown in figure 1 (b), or 

for two-dimensional flow, where L, is the arclength of the nth element and t is the 
tangential vector pointing in the counterclockwise direction as shown in figure 1 (a). 

In the numerical method the contour integral in (11) is computed using the 
trapezoidal rule based on the values of the tension at the grid nodes. The integral 
equation F(x;  7) = 0 for three-dimensional flow becomes 

= 0. (13) 
For two-dimensional flow we obtain the corresponding form 

Both equations (13) and (14) may be written in the unified symbolic form 

F ( x ; T ~ , x ~ ,  i = 1 ,... , K )  = 0, (15) 

where 7i and xi  are the tension and position of the ith grid point, and K is the total 
number of boundary elements. The problem is reduced to solving (15) for the values 
of the tension at the grid nodes. 

2.2. Numerical solution of the integral equation 
A standard procedure for solving (15) is by point-wise collocation. This involves 
applying (15) at all grid points to derive a system of linear equations for the unknown 
tensions. Unfortunately, we found that this method leads to strong sawtooth-type 
numerical instabilities similar to those observed previously for axisymmetric flow 
(Pozrikidis 1990, $2.4). It is interesting to remark that these instabilities do not produce 
a corresponding conspicuous oscillation in the position of the marker points for two- 
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dimensional flow, but they do so in the case of three-dimensional flow. To control the 
instabilities in the case of two-dimensional flow, we applied the five-point smoothing 
formula of Longuet-Higgins & Cokelet (1976) with one or two consecutive passes. We 
found the best results are obtained if the position of the marker points is smoothed 
along with the distribution of the tension after each time step. A similar smoothing 
procedure for three-dimensional flow did not produce satisfactory results. 

As an alternative to point-wise collocation with smoothing, we implemented a 
spectral projection method in which the membrane tension is expanded in a series of 
orthonormal basis functions. In the case of two-dimensional flow we expand the 
tension in a Fourier series with respect to arclength 1 as 

NF 

n=o 
7(1) = a,, + C [a, cos (4nnllL) +Pn sin (4nnl/L)], (16) 

where L is the total arclength of the membrane and NF is the total number of terms 
retained in the series. In the case of three-dimensional flow we use either the double 
Fourier expansion 

M F  N F  

~( '5 ,  7) = C C cos (2m7) [a,, cos (27'5) + P m n  sin (2nOI (17) 
m=o n=o 

or the Fourier-Legendre expansion 

M F  N F  

~ ( f [ , r )  = C P,(27) [ a m n  cos (2nO + P m n  sin(2nkJ1, (18) 
m=o n=o 

where P, is the mth-degree Legendre polynomial. Substituting (16), (17) or (18) into 
(15) and forming the projection of the resulting equation onto the basis functions we 
derive a system of linear equations for the coefficients a, and P,, or am, and P,,. We 
have verified that (17) and (18) produce identical solutions for the membrane tension. 

To illustrate the properties of the numerical method, in figure 2 we plot the 
instantaneous distribution of the membrane tension for an initially elliptical two- 
dimensional cell with aspect ratio a/b = 8, initial orientation angle 8, = 45", at time 
kt = 4 (see $3). The curves correspond to computations with the point-wise collocation 
method without smoothing, the point-wise collocation method with smoothing, the 
spectral method with NF = 4, and the spectral method with NF = 8 .  It is evident that 
the sawtooth instability is eliminated by applying smoothing. The curve generated 
using the spectral method with NF = 4 lies close to that generated with NF = 8 as well 
as to the curve generated by smoothing. Further experimentation showed that the 
spectral method is effective in removing the higher-order modes responsible for small- 
scale instabilities in agreement with previous experience (Krasny 1986), and the 
spectral method with NF = 8 is capable of reproducing the distribution of the 
membrane tension with sufficient accuracy at least as long as the cell maintains a 
compact shape. 

All computations of two-dimensional motions reported in $ 3 were conducted using 
the point-wise collocation method with smoothing, using 48 or 112 marker points over 
half of the cell membrane, and a time step of k At = 0.05. The integral of the Green's 
function G over each element of (8) is computed using the four-point Gauss quadrature 
after the singularity is subtracted off from the integrand, and the cell contour is 
approximated using cubic splines with respect to the parameter a. The membrane is 
considered to have reached a steady state when the orientation angle, computed in 
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FIGURE 2. Comparison of the distributions of the membrane tension around an initially two- 
dimensional elliptical cell with aspect ratio a/b  = 8, initial orientation angle 8, = 45" at time kt = 4 
computed suing : (a) the primary point-wise collocation method (solid line); (b) the point-wise 
collocation method with the five-point smoothing formula (bold solid line); (c) the spectral method 
with N ,  = 4 (long-dashed line); and (d) the spectral method with N ,  = 8 (dashed line). 

terms of the eigenvectors of the inertial tensor of the cell body, and the Taylor 
deformation parameter, defined as D = (L-B)/(L+B) where L and B are the 
maximum and minimum dimension of the cell respectively, have reached well-defined 
plateaus. The area of the cell is renormalized at every time step, and the maximum 
change in the membrane arclength due to numerical error for a cell that is initially 
aligned with the x-axis is less than 3 YO the initial value. For cells with initial inclination 
angle of x/4, the maximum change in the membrane arclength is less than 0.1 YO of the 
initial value. 

The computations for three-dimensional cells presented in 94 were conducted using 
the spectral expansion (14) with M F  = 4 and NF = 4, using 16 collocation points in the 
[-direction and 8 collocation points in the 7-direction which results in a total of 108 
boundary elements over a quarter of the cell membrane, and a time step of kAt = 0.05. 
The surface coordinate lines are approximated using cubic splines with respect to 6 or 
7. The computation of the integrals of the Green's function over the interfacial 
elements is discussed by Pozrikidis (1995). Steady state is considered to have been 
reached when the cell orientation angle and the Taylor deformation parameter 
computed from the membrane contour in the (x, y)-plane have reached well-defined 
asymptotic values. The cell volume is renormalized at each time step, and the 
maximum change in the membrane surface area is less than 1.5% the initial value. 

All computations were performed on SPARCstation 1 SUN computers. Each 
complete run required approximately 6 h or 30 h respectively for two-dimensional or 
three-dimensional flow. 

2.3. Efective stresses and membrane tank-treading frequency 
In the case of two-dimensional flow we compute the effective stress tensor of a dilute 
suspension of cells in shear flow using the equation 

r 
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FIGURE 3. Characteristics of a family of two-dimensional stationary deformed cells enclosed by 
incompressible membranes (Zahalak et al. 1987). The dimensionless shear rate e, cell area A / x R 2  and 
perimeter L/2xR as functions of the circularity c ;  R is the mean cell radius. 

where ( ) denotes the areal average, P is the pressure, eij is the rate-of-strain tensor, 
and @ is the number of cells per unit area of the suspension (Zhou & Pozrikidis 1993b). 
In the case of three-dimensional flow we use the analogous form 

where ( ) denotes the volume average and @ is the number of cells per unit volume. 
Under the action of the shear flow, the cell membrane will engage in a tank-treading 

motion around the cell interior. For two-dimensional flow, we define the tank-treading 
frequency f and period T as 

where ut is the tangential component of the membrane velocity called the tank-treading 
velocity. At steady state ut is constant around the cell contour. For three-dimensional 
flow, we calculate T using (21) with the tangential velocity computed around the trace 
of the membrane in the (x,y)-plane. 

3. Two-dimensional cells 
We consider the transient deformation of a two-dimensional cell subject to a simple 

shear flow as shown in figure l(a). We non-dimensionalize all variables using as 
characteristic length the equivalent radius d = ( A / ~ C ) ' / ~  where A is the cross-sectional 
area of the cell, velocity kd, time l /k,  stress pk,  and tension pkd, and find that the 
motion depends upon the initial cell configuration alone ; no physical constants enter 
the statement of the problem. When the cell has an elliptical shape in the undeformed 
state, the motion may be considered a function of the aspect ratio a / b  or reduced 
membrane perimeter length c = L/(2nd)  defined here as the cell circularity, as well as 
initial inclination angle 8,. 
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3.1. A family of steady deformed cells 
Zahalak et al. (1987) computed a family of stationary cells with incompressible 
interfaces suspended in a simple shear flow. The shapes of the cells are parametrized 
by the reduced shear rate E which is analogous to the capillary number, and ratio of 
the viscosities of the cell and suspending fluid A. Their asymptotic analysis requires that 
the cells exhibit small deviations from the circular shape corresponding to E = 0. In 
addition to computing steady shapes, Zahalak et al., provided illustrations of the 
streamline patterns and distributions of membrane tension and external and internal 
interfacial tractions. 

To compare the results of our numerical computations to those of the asymptotic 
analysis, we note that to every value of E there corresponds a value of the circularity 
c. The relation between these two parameters may be found using the equations for the 
cell shape provided by Zahalak et al. In figure 3 we plot E ,  reduced cell area A/(nR2), 
and reduced perimeter L/(2nR) as functions of c, where R is the mean cell radius 
defined as 

1 r2n 

and r is the radial distance from the origin around the cell. The curves end at c = 1.1092 
or E = 0.35, which is close to the point where the asymptotic analysis ceases to be valid. 

3.2. Evolution of elliptical cells 
Our computations show that an initially elliptical cell with c = 1.0301 or a / b  = 1.5 
deforms and reaches a stationary shape in which the membrane engages in a tank- 
treading motion around the cell with uniform tangential velocity. In figure 4(a) we 
present three superposed steady membrane profiles corresponding to three different 
initial inclination angles 8,. The corresponding initial cell profiles are shown on the 
right column. We find that for all three inclinations, the cell deforms into the same 
steady asymptotic shape, and this suggests the existence of a unique steady state. At 
this relatively small value of c- 1 the differences between the initial elliptical shape and 
the asymptotic shape are small, and deviations in aspect ratio are masked by numerical 
error. The open circles in figure 4(a) show the steady-state profile predicted by the 
perturbation analysis of Zahalak et al. corresponding to E = 0.1793. We find good 
agreement between the asymptotic predictions and the numerical computations, and 
this serves to validate the numerical method. 

The distribution of the membrane tension 7 and tank-treading velocity ut at steady 
state are plotted in figure 5(a) in radial format. We note that ut is uniform around the 
perimeter of the cell, as required by the condition of membrane incompressibility, but 
the distribution of the tension shows a noticeable nearly sinusoidal variation which is 
out of phase with the membrane curvature; the points of maximum and minimum 
tension are located near the points of minimum and maximum curvature. The 
agreement among the three computations for different initial inclination angles on the 
steady state tank-treading velocity is excellent, but we observe noticeable differences in 
the membrane tension. The latter is evidence of the fact that a small change in 
membrane shape results in relatively large changes in membrane tension around a cell 
with small aspect ratio. Further information on the magnitude of ut and 7 will be 
presented later in figure 6. The open circles in figure 5(a) show the asymptotic values 
of 7 and ut computed using equations (60) and (54) of Zahalak et al. (1987). The 
asymptotic value of 7 is closer to the numerical values for 8, = 0 and 90°, than for 
8, = 45", but this is a rather fortuitous coincidence. 
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FIGURE 4. Steady shapes of two-dimensional cells corresponding to (a) a/b  = I .5 or c = 1.0301 ; (b) 
a / b  = 2 or c = 1.0896; (c) a/b  = 4 or c = 1.3648; and (d )  a / b  = 8 or c = 1.8422. The dashed lines are 
for 8, = 0", the solid lines for 8, = 45", the long-dashed lines for 8, = 90". The corresponding initial 
cell profiles are shown next to the steady shapes. The open circles represent the asymptotic solution 
of Zahalak et al. (1987). 

Computations with moderate values of circularity showed similar behaviours. For 
instance, when the circularity is increased to 1.0896 corresponding to a /b  = 2, the 
deformation leads to a steady-state profile that is independent of O,, as shown in figure 
4(b). In this case, the asymptotic analysis of Zahalak et al. (1987) overestimates the 
magnitude of the cell orientation at steady state. This is not surprising, for c = 1.0896 
corresponds to the maximum shear rate at which the asymptotic analysis is expected 
to be valid. Further computations showed that a cell with high circularity deforms in 
a smooth manner and attains a steady shape that is significantly different from the 
initial elliptical shape. Figure 4(c, d )  illustrates steady cell profiles along with the initial 
cell shapes for a/b  = 4 and 8, corresponding to c = 1.3648 and 1.8422. In both cases 
the steady shape was found to be insensitive to the initial cell inclination angle O,, 
suggesting the existence of a unique steady state. 
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FIGURE 5. The distributions of membrane tension and tank-treading velocity plotted in a radial 
format. The value of the tension or tank-treading velocity corresponding to a particular point is 
proportional to the length of the line segment that is perpendicular to the membrane and extends up 
to the corresponding contours as shown in panel (a). The dashed line is for 8, = 0", the solid line for 
6, = 45", the long-dashed line for 6, = 90". Open circles represent the asymptotic solution of Zahalak 
et al. (1987). (a) a / b  = 1.5, (6)  a/b  = 4, 6, = 0"; (c) a / b  = 4, 6, = 45"; ( d )  a / b  = 8, 6, = 0". 
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FIGURE 6 (a, b). For caption see facing page. 

The distributions of membrane tension and tank-treading velocity corresponding to 
the highly deformed cells are shown in figure 5 (b, C ,  d ) .  The tank-treading velocities are 
constant around the membrane, but the tensions show significant variations with 
higher values along the flattened upper and lower side of the cells. In the case a / b  = 
4 the tension is positive all around the cell, which indicates that the membrane is being 
stretched, whereas for a / b  = 8 the tension is positive over the major portion of the 
membrane and becomes negative near the tip where the membrane curvature is highest, 
which indicates that the membrane is locally compressed. A truly incompressible 
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FIGURE 6 .  (a) The orientation angle of a two-dimensional cell at steady state as a function of 
circularity c. Open circles show the computed values, and the dashed line represents the predictions 
of the asymptotic analysis of Zahalak et al. (1987). (b) The maximum tension 7,,, as a function of 
c. Open circles represent the computed values corresponding to 8, = O", open diamonds to 8, = 45", 
open squares to 8, = 90°, and the dashed line corresponds to the asymptotic analysis of Zahalak et 
al. (c) The computed tank-treading velocity (solid line) and frequency (dashed line) as functions of 
c. (d )  The effective shear stress (solid line) and normal stress difference (dashed line). 
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FIGURE 7(a,b) .  For caption see facing page. 

membrane will develop wrinkles at that point, but numerical smoothing emulates 
bending elasticity and prevents the occurrence of small-scale oscillations. 

3.3 .  Steady shapes 
The numerical computations suggest that the steady shape of an initially elliptical cell 
is a single-valued function of the circularity. In turn, this suggests that the geometrical 
and dynamic properties of steadily deformed two-dimensional cells may be described 
in terms of the aspect ratio a / b  or circularity c. In figure 6(a) we plot the steady 
orientation angle t9 as a function of c, and find that nearly circular cells are oriented 
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FIGURE 7. (a) A sequence of evolving profiles of an initially biconcave cell aligned with the shear flow 
at kt = 0,1,2, ... ,9.  (b) A sequence of evolving profiles for Op = 45" at kt = 0,1,2, ... , 6 .  The initial 
shapes are shown with open circles. (c) The corresponding distribution of membrane tension (bold 
solid line) and tank-treading velocity (solid line) around the membrane at steady state in radial 
format. ( d )  The streamline pattern inside and outside the cell at steady state. 

along the major principal axis of rate of strain of the shear flow, at an angle of 45", 
whereas highly elongated cells tend to align with the flow. The dashed curve in figure 
6(a) represents the asymptotic predictions of Zahalak et al. (1987) which are seen to 
provide a natural extension of the numerical data towards small values of c. 

The maximum membrane tension 7,,, is an important variable for the study of 
membrane failure and cell hemolysis. Experiments have shown that when 7,,, exceeds 
a threshold which is somewhere between 5 and 10dyncm-' depending upon 
physiological conditions, the membrane is likely to fail. In figure 6(b)  we plot 7,,, as 
a function of c for three different values of 8,, and obtain small variations around well- 
defined mean values. In the limit as c tends to one, r,,, becomes singular, which 
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indicates that an infinite tension is required to resist the shearing deformation and 
maintain the circular shape. As c is increased, 7,,, is reduced, and as c tends to infinity, 
in which case the cell resembles a thin sheet, 7,,, reaches an asymptotic value that is 
roughly equal to 1.75pukd. The dashed curve in figure 6(b) represents the asymptotic 
solution obtained using equation (59) of Zahalak et al. For small values of c ,  the 
computed values of 7,,, are in good agreement with the asymptotic predictions. 

In figure 6 (c)  we plot the tank-treading velocity ut and tank-treading frequency f at 
steady state as functions of c, and find that both are reduced as c is increased. The 
computed values of ut are in good agreement with the asymptotic predictions of 
Zahalak et al. at small values of c. 

One motivation for studying the behaviour of the individual blood cells is to 
investigate the rheological properties of blood. In figure 6(d) we plot the effective shear 
stress C,, and normal stress difference JV” = C,, - C,, of a dilute suspension, where C 
is the last term on the right-hand side of (19). For a circular cell Cxy has a finite value 
whereas JV” is equal to zero due to the spatial isotropy of the cell shape. As c is 
increased, the effective shear stress decreases because the cell becomes more elongated 
and tends to align with the shear flow, therefore effectively reducing the rate of viscous 
dissipation within the flow. The normal stress difference increases as a result of 
anisotropy attributed to the increasingly elongated cell shape. 

3.4. Deformation of cells with biconcave shapes 
The above discussion was based on numerical computations for cells with elliptical 
initial shapes. To examine whether a cell with a convoluted shape might deform in a 
significantly different way and obtain a different asymptotic shape, as well as to assess 
the effectiveness of the numerical method for more complex cell geometries, we 
consider the deformation of cells whose undeformed shape resembles the mid-plane 
cross-sectional shape of a normal red blood cell as described by Evans & Fung (1972). 
The initial cell shape is described by a properly scaled version of the equation 

y’ = 0.5( 1 - x’~)’’~ (c, + c1 x’, + c2 x’~), (23) 
where - 1 < x’ < 1, co = 0.207 161, c1 = 2.002558, c, = - 1.122762, and the XI- andy’- 
axes are oriented along the cell’s major and minor axis. The corresponding circularity 
is c = 1.515. 

In figure 7(a ,  b) we present sequences of evolving cell profiles for two initial 
orientations. When the cell is initially aligned in the direction of the flow, the 
deformation leads to formation of two symmetric pockets originating at the dimples as 
shown in figure 7(a). As the cell deforms, the depth of the pockets is reduced and the 
cell attains a smooth, nearly elliptical steady shape. When the cell is initially aligned at 
45” with respect to the x-axis, it stretches under the action of the shear flow and obtains 
the same nearly elliptical steady shape without developing any pockets or dimples as 
shown in figure 7(b). 

Comparing the steady shapes shown in figures 7 (a) and 7 (b) with each other as well 
as to the steady shape corresponding to an initially elliptical cell with identical 
circularity, we find only minor differences attributed to numerical error. This 
observation confirms that for a cell of a given circularity, the stationary shape in shear 
flow is independent of the initial shape as long as this is not significantly convoluted 
so that the cell may fold during the deformation. The transient motion and time it takes 
for the cell to reach the stationary shape, however, show strong dependences on the 
initial configuration. For instance, the times at which the biconcave cells shown in 
figures 7(a) and 7(b) reach stationary shapes are approximately k t  = 9 and 6. 
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The distribution of membrane tension and membrane tank-treading velocity at 
steady state corresponding to evolutions shown in figure 7 (a, b) are illustrated in figure 
7(c). As in the case of elliptical cells, we observe that the tension is minimum near the 
point of maximum membrane curvature and vice versa, whereas ut is uniform along the 
membrane. The values of r,,, and ut may be read off figure 6(b, c) for c = 1.515. 
Experimental observations have shown that the membrane is likely to fail when r,,, 
exceeds a critical value that is between 5 and 10 dyn cm-’. Using the maximum value 
we derive a limit on the maximum shear stress under which the cells will remain intact, 
umax = f (10 dyn cmP1)/(5 pm) = 1000 dyn cm+, where we have used the value d = 
5 pm for the equivalent cell radius. This estimate is in good agreement with the 
experimental observations of Sutera & Mehradi (1975) and Beissinger & Laugel(l978). 

Experiments have shown that the tank-treading frequency f of human erythrocytes 
suspended in a medium of comparable viscosity is a nearly linear function of shear rate 
and varies considerably with cell age. When normalized by the shear rate, f / k  is 
roughly equal to 0.22 for young cells and 0.18 for older cells (Tran-Son-Tay, Sutera & 
Rao 1984). The computed value off/k corresponding to figure 7(c) is 0.19, which is 
remarkably close to that of real three-dimensional red blood cells. This successful 
comparison suggests that the evolution of the two-dimensional cells reveals some 
salient features of the natural three-dimensional motion. Caution, however, should be 
exercised in applying these results to red blood cells in view of the strong assumptions 
regarding the cell membrane mechanical properties. 

To gain further insights into the structure of the flow inside and outside the cell, in 
figure 7(d) we present a streamline pattern at steady state. Zahalak et al. (1987) found 
that the streamlines inside cells with small aspect ratio form a single eddy. We find two 
small internal eddies enclosed by a larger eddy lining the membrane. A similar double- 
eddy pattern has also been observed inside liquid drops whose viscosity is significantly 
lower than that of the suspending fluid (Kennedy, Pozrikidis & Skalak 1994), but has 
not been reported in previous studies on blood cell flow. The occurrence of two eddies 
inside the cell is attributable to the highly elongated cell shape. The general features of 
the streamline pattern outside the cell are similar to those found by Zahalak et al. for 
mildly deformed cells, as well as those occurring around sheared two-dimensional 
drops (Zhou & Pozrikidis 1993~).  In all cases, the external flow includes a region of 
recirculating flow enclosed by a closed dividing streamline. 

4. Three-dimensional cells 
We consider next the deformation of the three-dimensional cell illustrated in figure 

1 (b). Non-dimensionalizing all variables as discussed in $ 3 using as characteristic 
length the equivalent cell radius d = (3 V / ~ X ) ~ / ~  where Vis the cell volume, we find that 
the motion depends only upon the initial cell shape. For a cell with an oblate spheroidal 
initial shape with major and minor axes equal to a and b, the motion is a function of 
the aspect ratio a /b  or sphericity s = S/(47cd2) where S is the surface area, and initial 
inclination angle 8,. 

To describe the shape of the membrane we introduce a system of two curvilinear 
non-orthogonal surface coordinates l j  and 7 as discussed in $2. Initially, the <-lines are 
parallel to the (x, y)-plane, and the 7-lines lie in planes that pass through the z-axis, as 
shown in figure 8 (a). In the most accurate computations we discretize the membrane 
using 32 divisions in both the lj- and ?-directions. Owing to the dual symmetry of the 
cell shape, it suffices to compute the deformation of the upper front quarter of the cell 
alone, which is described by a 16 x 8 grid of marker points. To avoid severe grid 
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FIGURE 8. (a) The surface grid on an oblate spheroidal cell with a/b  = 1.5 and 8, = 45" at the initial 
instance. The shape of half the cell near steady state for (b) 8, = 0", (c) 8, = 4S0, and ( d )  8, = 90", 
and (e)  their projection in the (x,y)-plane. The dashed line is for 8, = 0", the solid line for 8, = 45", 
the long-dashed line for 8, = 90". 



Deformation of liquid capsules in simple shear flow 195 

0.2 0.4 0.6 0.8 1 .o 
5 

FIGURE 9. (a) The evolution of the cell orientation angle for a/b  = 1.5. (b) The membrane tension 
distribution as a function of the surface coordinates g and 'I for a /b  = 1.5, Oo = 0" at steady state. The 
6 = 0 line is indicated in figure 8(b) with an arrow. 

deformations and concomitant numerical inaccuracies, we advance the position of the 
marker points using the normal component of the membrane velocity. 

In figure 8(a)  we show the initial shape of a cell with aspect ratio a/b = 1.5 
corresponding to s = 1.031, oriented at 8, = 45". Under the action of the external 
shearing forces the cell deforms from the initially ellipsoidal shape to a steady state 
shown in figure 8(c)  in which the cell membrane tank-treads steadily around the 
interior fluid. The tank-treading velocity is a function of location over the membrane 
as required by the condition of incompressibility. In figure 8(b,  c, d )  we show half of 
the cell surface at steady state corresponding to three initial inclinations 8, = 0", 45", 
90°, and in figure 8 (e) we plot the projections of the steady shapes on the (x, y)-plane. 
Attributing the small differences to numerical error suggests that the steady shape is 
independent of the initial orientation. The evolution of the cell inclination angle is 
shown in figure 9(a) ,  where we observe that all three curves tend to the asymptotic 
value 33". 

In figure 9(b) we present the distribution of the membrane tension at steady state 
corresponding to 0, = 0". To make a correspondence between the physical location of 
points on the membrane and the location in the surface coordinate plane, in figure 8 (b) 
we have indicated the 7-line corresponding to 6 = 0 with an arrow. Inspecting figure 
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FIGURE 10. The shape of half the cell at steady state for a /b  = 2 and (a) 8, = O", (b) 8, = 45". (c) The 
membrane tension distribution as a function of 5 and 7 for 8, = 45". The = 0 line is indicated in 
figure 1O(b) with an arrow. 

9(b) in conjunction with figure 8(b) shows that 7 is inversely proportional to the 
membrane curvature, and reaches a maximum at some point in the (x, y)-plane on the 
upper surface towards the rear end of the cell. This feature is familiar from the case of 
two-dimensional flow. 

Steady cell shapes for a larger aspect ratio a / b  = 2, corresponding to s = 1.095 are 
shown in figure 1O(a, b) for 8, = 0" and 45". The fact that these two shapes are almost 
identical with small differences attributed to numerical error suggests that the 
asymptotic steady shape is unique. A plot of the corresponding membrane tension 
distribution for 0, = 45", shown in figure lO(c), reveals that 7 reaches a maximum near 
the point of minimum membrane curvature. 

To illustrate the three-dimensional nature of the computed steady cell shapes from 
a different perspective, in figure ll(a, b) we show the projection of cells onto the 
(x,y)-plane which is perpendicular to the direction of the mean velocity gradient, for 
a / b  = 1.5,2 or s = 1.03 1, 1.095, corresponding to the initial angle 8, = 45". This is the 
perspective captured by photographs of red blood cells through a cone-and-plate 
viscometer (rheoscope). The sphericity s of normal red blood cells is equal to 1.256 for 
old cells and 1.262 for young cells. These values are significantly higher than the ones 
described above for a / b  = 1.5 and 2. Unfortunately, because of numerical instabilities, 
computations for cells with higher aspect ratios could not be carried out with sufficient 
accuracy. 

In figure ll(c) we present a sequence of photographs of normal red blood cells 
suspended in a dextran-saline solution at successive time intervals, taken from Fischer 
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FIGURE 11. Projections of the steady cell shape onto the (x,z)-plane for (a)  alb = 1.5 and 0, = 45"; 
(b) alb  = 2 and 0,, = 45". (c) A sequence of photographs of red blood cells suspended in dextran- 
saline solution during viscometric flow in a cone-and-plate chamber at k = 46 s-' (Fischer et al. 1978). 
The photographs are taken at time interval of 83 ms. 

S A X ,  4, 0 TrnaxlPkd f l k  G J P k  MJPk  W P k  
1.031 0.26 1.30 33.2 5.41 0.48 1.24 0.985 -0.336 
1.095 0.37 1.57 26.2 4.37 0.45 1.18 1.339 -0.542 

TABLE 1. Properties of three-dimensional cells at steady state 

et al. (1978). The two latex particles on the membrane serve as Lagrangian markers. 
We expect that as s is increased, the computed shapes will approximate the 
photographed shapes with increasing accuracy. Note, however, that because the grid 
lines in the computations are convected with the normal velocity of the membrane, the 
contour lines do not represent actual particle paths. 

In table 1 we summarize the computed cell aspect ratios and orientation, maximum 
tension, tank-treading frequency, effective shear stress, and normal stress differences at 
steady state. The aspect ratio A,, is defined as the ratio of the maximum to minimum 
cell dimension in the (x, y)-plane. The apparent aspect ratio A:, is defined as the ratio 
of the maximum to minimum dimension of the projection of the cell onto the (x,y)- 
plane. As s is increased, both aspect ratios become higher, indicating that the cell tends 
to become more deformed, whereas the orientation angle is reduced, indicating that the 
cell tends to align with the shear flow. As in the case of two-dimensional flow, higher 
sphericity implies lower maximum tension, lower effective shear stress, and higher first 
and second normal stress differences. As in the case of suspensions of liquid drops, the 
first normal stress difference Nl is positive whereas the second normal stress difference 
N2 is negative, and this suggests that a dilute suspension behaves like a non-Newtonian 
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fluid with some elastic properties similar to those exhibited by polymeric solutions 
(Schowalter 1978). 

Focusing on the behaviour of the tank-treading frequency, we compare the results 
of table 1 for a three-dimensional cell to those in figure 6 (c) for a two-dimensional cell 
with corresponding circularity, and find good agreement. This suggests that the tank- 
treading frequency is not sensitive to the finite size of the cell in the z-direction. In $3 
we saw that the computed tank-treading frequency of two-dimensional cells agrees 
remarkably well with that observed for real blood cells. Hence, by extrapolation, the 
tank-treading frequency that would arise from the present three-dimensional model is 
expected to agree well with laboratory measurements for normal blood cells (Tran- 
Son-Tay et al. 1984). 

The tank-treading frequencies shown in table 1 are computed using equation (21) 
with the time period T calculated from the tangential velocity around the trace of the 
membrane in the (x,y)-plane. Fischer et al. (1978) report that all points on the 
membrane tank-tread approximately with the same frequency, a feature that may be 
attributed to the membrane elasticity. To assess the consequences of neglecting the 
viscoelastic properties of the membrane on the variation of the membrane tank- 
treading frequency f over the cell surface, we calculate f following a marker point 
starting from a grid point off the (x,y)-plane when the cell has reached a steady state, 
and find that the variation in the tank-treading frequency is not significant. For 
instance, for s = 1.03 1, when the marker point starts from the third, fifth, and seventh 
7-line along the first [-line,f/k is equal to 0.495, 0.500, and 0.502, respectively, which 
is about 4 %  different from 0.48, the value shown in table 1. 

5. Summary 
We studied the transient and asymptotic deformation of two-dimensional and three- 

dimensional liquid capsules enclosed by incompressible membranes as a model of red 
blood cell deformation in simple shear flow. Assuming that the mechanical response of 
the membrane is dominated by isotropic tension and the viscosity of the cytoplasmic 
fluid is equal to that of the suspending medium, we considered the motion as a function 
of the cell circularity or sphericity expressing the reduced ratio of the membrane 
perimeter or surface area to the cell area or volume. The two-dimensional and three- 
dimensional evolutions showed many qualitative and, in some cases, quantitative 
similarities, and this suggests that the salient features of the cell deformation may be 
predicted or reduced from two-dimensional models. 

At steady state the membrane rotates around the cell in a tank-treading model. The 
tank-treading frequency of a two-dimensional cell is close to that of a three- 
dimensional cell, and in good agreement with experimental observations of normal red 
blood cells. As the sphericity is increased, the effective shear stress of a dilute 
suspension decreases because the cell tends to align with the mean flow, therefore 
reducing the rate of viscous dissipation within the fluid. The magnitude of the normal 
stress differences increases as the cell becomes more deformed, thereby introducing a 
higher degree of anisotropy to the flow. A dilute suspension of red cells is expected to 
behave like an elastic fluid. 
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